
REPORT

On the Geotechnical Investigation undertaken for Erf 1058, Whites Avenue, Hoekwil, Wilderness in the Western Cape Province

Table of Contents

EXECUTIV	VE SUMMARY	4
1. IN	NTRODUCTION AND TERMS OF REFERENCE	6
2. DE	ESCRIPTION OF THE SITE AND ACCESS	-
3. IN	NVESTIGATION PROCEDURE	
3.1	Desk Study	
3.2	FIELD-WORK	
3.3	LABORATORY TESTING	8
4. SI	ITE GEOLOGY AND CLIMATE	g
4.1	GENERAL GEOLOGY	<u></u>
4.2	TOPOGRAPHY, DRAINAGE AND SITE CLIMATE	10
4.3	GEOHYDROLOGY	
4.4	DYNAMIC CONE PENETRATION TESTS	10
5. SU	UMMARY OF LABORATORY RESULTS	11
5.1	POTENTIAL EXPANSIVENESS	11
5.2	Excavation Classification	12
5.3	ERODIBILITY	12
5.4	GROUND SLOPE STABILITY	12
5.5	CALIFORNIA BEARING RATIO TESTS	12
5.6	PH AND CONDUCTIVITY TESTS	12
6. EN	NGINEERING PROPERTIES OF SOILS	
7. GE	EOTECHNICAL CONSIDERATIONS	14
7.1	CLASSIFICATION OF SOILS	14
7.2	Excavatibility	14
7.3	SOIL CLASSIFICATION	14
7.4	GROUND WATER	14
7.5	STABILITY OF SLOPES AND EXCAVATIONS	
7.6	FLOOD LINE	
8. CO	DNCLUSION AND RECOMMENDATIONS	
LIST OF R	REFERENCES	16
LIST OF A	APPENDICES	17
APPE	ENDIX A: SOIL PROFILE SHEETS	
ДРР	FNDIX B. LABORATORY TEST RESULTS	17

TABLE OF FIGURES

Figure 1: Site Location	7
Figure 2: Geological Map of the Study Area	
Figure 3: Macro-Climatic Regions of Southern Africa (Adapted from Weinert, 1980)	10
Figure 4: Regional Distribution of Expansive Clays	13
TABLE OF TABLES	
Table 1: Reference Summary	6
Table 2: Summary of Laboratory Results	11

EXECUTIVE SUMMARY

Casper Badenhorst was appointed by TESTPRO Laboratory (Pty) Ltd to compile a geotechnical engineering report based on the conditions on site and the information provided by the client. The Investigation was carried out in July 2023.

The following activities were carried out to finalise this report

- Desktop Study
- Site Visit
- Field mapping
- Soil profiling
- Laboratory testing

The coordinates of the site are 33°59'20.27"S 22°35'55.96"E.

The area of the site is 1.2 hectares. Three (3) test pits were excavated by mini-excavator to adequately cover the study area and the soil profiles were described according to the method proposed by Jennings, Brink and Williams (1973).

Disturbed samples of the most prominent soil horizons were taken and submitted for indicator and CBR tests. Three (3) test pits were excavated across the study area with two refusals encountered at depths less than 1.5meters. The average depth of the test pits were 1.38 meters. Excavatability constraints may be expected for excavations exceeding 1.5meters in depth.

The geological map from the Council for Geosciences indicates that the site is underlain by gneissic granite and granodiorite and albitite (intrusive) of the Maalgaten and related granites (Nmg) of the Namibian Period. The soil horizons consisted of silty sand materials as recorded in the attached soil profiles included within Annexure A.

The study area is located in Whites Road near the Touws River, south east of George in the Western Cape Province. The study area drains well by sheetwash to the south of the study area. Wilderness is a moderate climatic region with a Weinert N-value between 2 and 5. Chemical weathering may occur in the warm wet summer periods.

Ground water was encountered at 0.64, it is not clear if this is a permanent or perched water table. It is assumed to be permanent and subject to seasonal fluctuations.

The potential expansiveness of the material encountered on the site was calculated according to the method proposed by Van der Merwe (1964). The following material characteristics are considered when applying this method:

- Clay content
- Plasticity index
- Liquid limit
- Linear shrinkage

The finding can be differentiated as follows:

Generally the materials encountered on site were silty sand. The foundation indicators indicate "low" heave potential across the study area.

Three (3) CBR tests were done and the results varied between 6 and 19% @ 95% Mod AASHTO, reflecting low to medium bearing capacities of approximately 54 to 171 KPa. The typical materials sampled on site classified as G8 to >G9 according to the COLTO classification system.

No pH and electrical conductivity samples were taken. Due to the nature of the development, corrosiveness is not considered to be a restrictive factor.

Five (5) Dynamic Cone Penetration (DCP) tests were conducted on site. Based on the DCP results attached to this report it is evident consistency increases with depth. The material near the surface is more silty and less dense (likely loose transported materials), while the lower layers were more consolidated and of higher consistency. DCP tests vary depending on the moisture conditions on site and may give lower in-situ CBR results in wet conditions and higher results in dry conditions.

The following geotechnical considerations that could influence structure were identified:

Engineering properties of soils:

- The NHBRC engineering geological zoning of this site is as follows: S. The Site Classes are S1 (100%). All the site classes are indicated on the soil profiles.
- Site Class S1 Reinforced strip foot foundations are recommended as will be decided upon by the Structural Engineer. All trenches have to be inspected by the appointed Structural Engineer before steel is placed (if required) and concrete is poured.
- Although none of the refusals encountered were shallow, excavation constraints may be expected in excavations exceeding 800mm.

1. INTRODUCTION AND TERMS OF REFERENCE

Casper Badenhorst was appointed by TESTPRO Laboratory (Pty) Ltd to compile a materials report on Erf 1058, Whites Avenue, Hoekwil, Wilderness, located in George Local Municipality of the Western Cape Province. The site field investigation was undertaken according to the expected requirements for this project.

The following aspects were addressed in this report:

- 1.1 Geology and soil profiles
- 1.2 Geohydrology
- 1.3 Engineering properties of soil samples taken

The schedule of services includes trial pits (3 for this project), with material classifications (classified according to COLTO), grading analysis, Atterberg limits and potential expansiveness of the *in-situ* material. For the purpose of this study, 3 foundation indicators were sampled with 3 maximum dry density, optimum moisture content and California Bearing Ratio samples.

Table 1: Reference Summary

Description	Quantity	Relevant method or specification
Test Pits Excavated	3 test pits	As per quotation, by mini-excavator
Fieldwork and Sampling	3 samples	Sampled according to TMH 5 with relevance to SAICE Geotechnical Investigations Manual. No deviations were recorded.
Analysis of samples	3 samples	Subjected to analysis according to SANS 3001
Material Classifications	3 classifications	According to COLTO 1998

Phase 1: Field work, which includes the excavation of 3 test pits, profiled to at least 2meters deep or to shallower refusal for soil profiling and sampling purposes as part of the contract.

Phase 2: Laboratory testing to establish the characteristics of the in-situ materials on site done by **TESTPRO Laboratory (Pty) Ltd.** The testing includes:

- Sieve Analysis and Grading
- Atterberg Limits
- Moisture Density Relationship and Californian Bearing Ratio

Phase 3: Assessment Reporting done by Casper Badenhorst, which includes the following:

- Assessment of the site conditions and recommendations thereon
- Engineering properties of soils and expected geotechnical constraints

This report outlines the method of the investigation and describes the geological conditions encountered. The results of the investigation are evaluated, and conclusions drawn with regard to the above objectives.

2. DESCRIPTION OF THE SITE AND ACCESS

The site is located on Erf 1058, Whites Avenue, Hoekwil, Wilderness located in George Local Municipality in the Western Cape Province.

The site coordinates are 33°59'20.27"S 22°35'55.96"E.

The area of the site is 1.2 hectares. Three (3) test pits were excavated by mini-excavator to adequately cover the study area and the soil profiles were described according to the method proposed by Jennings, Brink and Williams (1973).

The site location is indicated below: (Figure 1)

Figure 1: Site Location

3. INVESTIGATION PROCEDURE

3.1 Desk Study

A desk study involving the perusal of the 1:250 000 geological maps as well as a detailed geological description of the area by Brink (1979) was undertaken to establish broad geological boundaries. Geological information obtained from the Council of Geoscience is depicted in Figure 2 within section 4.1.

3.2 Field Work

The field work included the excavation of 3 test pits in order to determine the soil formations of the underlying soil and to obtain samples for possible laboratory testing.

The test pits were excavated by mini-excavator to a depth of 2meters or refusal. The test pit positions are indicated on Figure 1. The soil profiling of the 3 test pits were carried out according to the guidelines proposed by Jennings et al (1973). The profile logs of the test pits are given in **Appendix A**. Soil samples were taken from strategic horizons along the sides of the test pits for laboratory testing (**Appendix B**).

3.3 Laboratory Testing

Soil samples taken during the field work stage were submitted to the laboratory at TESTPRO Laboratory (Pty) Ltd for the following testing: (as stipulated in the sub-consultant agreement)

- a) Foundation Indicator Test: SANS 3001 GR1, GR10 and ASTM D422
- b) Optimum Moisture Content and Maximum Dry Density Test: SANS 3001: GR20 and GR30
- c) Californian Bearing Ratio of a Soil Sample: SANS 3001 GR40

The test results are included in Appendix B at the back of the report.

4. SITE GEOLOGY AND CLIMATE

4.1 General Geology

The geological map from the Council for Geosciences indicates that the site is underlain by gneissic granite and granodiorite and albitite (intrusive) of the Maalgaten and related granites (Nmg) of the Namibian Period. The soil horizons consisted of silty sand materials as recorded in the attached soil profiles included within Annexure A.

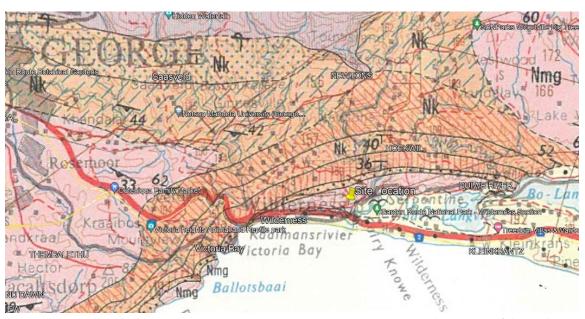


Figure 2: Geological Map of the Study Area

4.2 Topography, Drainage and Site Climate

The study area is located in Whites Road near the Touws River, south east of George in the Western Cape Province. The study area drains well by sheetwash to the south of the study area. Wilderness is a moderate climatic region with a Weinert N-value between 2 and 5. Chemical weathering may occur in the warm wet summer periods.

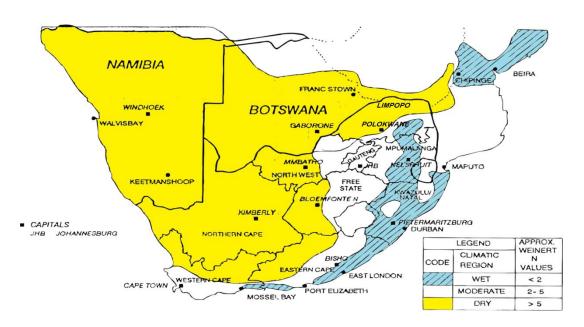


Figure 3: Macro-Climatic Regions of Southern Africa (Adapted from Weinert, 1980)

4.3 Geohydrology

Ground water was encountered at 0.64, it is not clear if this is a permanent or perched water table. It is assumed to be permanent and subject to seasonal fluctuations.

4.4 Dynamic Cone Penetration Tests

Five (5) Dynamic Cone Penetration (DCP) tests were conducted on site. Based on the DCP results attached to this report it is evident consistency increases with depth. The material near the surface is more silty and less dense (likely loose transported materials), while the lower layers were more consolidated and of higher consistency. DCP tests vary depending on the moisture conditions on site and may give lower in-situ CBR results in wet conditions and higher results in dry conditions.

5. SUMMARY OF LABORATORY RESULTS

Table 2: Summary of Laboratory Results

TP Nr	Clay %	Silt %	Sand %	Gravel %	PI %	CBR % @ 95%
TP1: 650-1200	8.3	13.4	65	13.2	7	19
TP2: 680-1400	11.3	65.6	15	8.2	9	6
TP3: 400-1550	7.1	66.5	14.7	11.6	8	6

The relevant engineering characteristics of the materials encountered have been evaluated by visual assessment during profiling and from the results of the field and laboratory testing; these may be summarized as follows:

5.1 Potential Expansiveness

The potential expansiveness of the materials encountered on the site was calculated according to the method proposed by Van der Merwe (1964). The following material characteristics are considered when applying this method:

- Clay content
- Plasticity index
- Liquid limit
- Linear shrinkage

The method of Van der Merwe (1964) was used to determine the potential heave of soil samples. In addition to Van der Merwe's method, the plasticity index and linear shrinkage of soil samples were used to indicate the soils potential expansiveness. From the laboratory test results the potential expansiveness of all soils on the site is as follows:

Generally the materials encountered on site were silty sand. The foundation indicators indicate "low" heave potential across the study area.

5.2 Excavation Classification

Excavatability is defined as the ease with which the ground can be dug to a depth of 1,5m. This is of importance for urban development as increased costs are associated with installing services or foundations in areas where difficulty is experienced during the investigation stage.

Three (3) test pits were excavated across the study area with two refusals encountered at depths less than 1.5meters. The average depth of the test pits were 1.38 meters. Excavatability constraints may be expected for excavations exceeding 1.5meters in depth.

In terms of the SABS 1200 the excavations can be classified as soft to intermediate to 1meter in depth. Excavations between 1.0 and 1.5 meters are considered as intermediate. Excavations in excess of 1.5 meters are considered to be intermediate to hard.

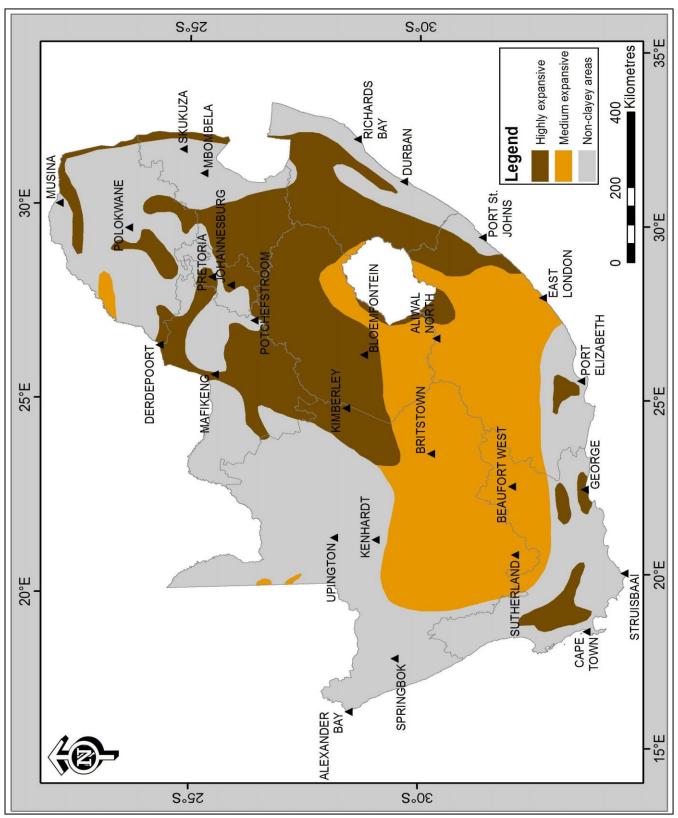
5.3 Erodibility

There were no signs of piping (erosion) visible on site.

5.4 Ground Slope Stability

No unstable geological materials that can move either gradually (creep) or suddenly as a slump or a slide are visually present.

5.5 California Bearing Ratio Tests


Three (3) CBR tests were done and the results varied between 6 and 19% @ 95% Mod AASHTO, reflecting low to medium bearing capacities of approximately 54 to 171 KPa. The typical materials sampled on site classified as G8 to >G9 according to the COLTO classification system.

5.6 pH and Conductivity Tests

No pH and electrical conductivity samples were taken. Due to the nature of the development, corrosiveness is not considered to be a restrictive factor.

6. ENGINEERING PROPERTIES OF SOILS

The NHBRC engineering geological zoning of this site is as follows: S. The Site Classes are S1 (100%). All the site classes are indicated on the soil profiles.

Figure 4: Regional Distribution of Expansive Clays

7. GEOTECHNICAL CONSIDERATIONS

7.1 Classification of Soils

The typical materials encountered on site were silty sand. Silty alluvial materials near the surface with the material becoming more gravelly with depth. The classification of the silty sand sampled (gneissic granite and granodiorite and albitite (intrusive)) classified as G8 to >G9 according to the COLTO classification system.

7.2 Excavatibility

Although none of the refusals encountered were shallow, excavation constraints may be expected in excavations exceeding 800mm

7.3 Soil Classification

The materials typically encountered on site were profiled as silty sand.

7.4 Ground Water

Ground water was encountered at 0.64, it is not clear if this is a permanent or perched water table. It is assumed to be permanent and subject to seasonal fluctuations.

7.5 Stability of Slopes and Excavations

The side walls were stable.

7.6 Flood Line

An exact flood line should be determined, but in this report, it is suggested that 1:50 year flood line is adopted.

8. CONCLUSION AND RECOMMENDATIONS

It is important to note that the recommendations are based primarily on the profiling of test pits and the interpolation of

information between test pits. It is therefore possible that variations from the expected conditions can occur.

8.1 Classification of soils – Three (3) CBR tests were done and the results varied between 6 and 19% @ 95% Mod

AASHTO, reflecting low to medium bearing capacities of approximately 54 to 171 KPa. The typical materials sampled

on site classified as G8 to >G9 according to the COLTO classification system.

8.2 Excavatability - No significant problems were noted, with no refusals encountered at depths shallower than 800mm.

Excavation constraints may be expected at depths exceeding 1meter.

8.3 Geohydrology - Excavations are to be adequately drained should rain water fill trenches during construction or if the

water tables rise.

8.4 Construction Material - The low expansive materials found on this site are suitable for floor fill purposes. Where

encountered, clayey materials should be cut to spoil.

8.5 Stability of Excavations - Excavations were all stable and no side walls collapsed.

8.6 The NHBRC engineering geological zoning of this site is as follows: S. The Site Classes are S1 (100%). All the site

classes are indicated on the soil profiles.

8.7 Site Class S1 – Reinforced strip foot foundations are recommended as will be decided upon by the Structural

Engineer. All trenches have to be inspected by the appointed Structural Engineer before steel is placed (if required)

and concrete is poured.

CH BADENHORST Pr Tech Eng

ECSA Reg nr 9170001

Wilderness1058Report (WB)

15 | Page

LIST OF REFERENCES

BRINK A B A. 1985. Engineering Geology of Southern Africa.

Building Publications: Pretoria.

DAS B M. 1994. PRINCIPLES OF GEOTECHNICAL ENGINEERING.

P W S Publishing Company: Boston.

HARMSE H J VON M. DISPERSIEWE GROND EN HUL ONTSTAAN, IDENTIFIKASIE EN STABILISASIE.

GROUND PROFILE No. 22, APRIL 1980.

HANDY KH. 1973 COLLAPSIBLE IOESS IN IOWA. PROCEEDINGS OF THE SOIL SOCIETY OF AMERICA,

VOL. 37, 281-284, 1973.

JENNINGS J E et al. 1973. REVISED GUIDE TO SOIL PROFILING FOR CIVIL ENGINEERING PURPOSED IN

SOUTHERN AFRICA. THE CIVIL ENGINEERING IN SOUTH AFRICA.

Volume 15, No. 1, pp. 3-12. SAICE: Johannesburg.

JENNINGS J E & KNIGHT K. 1975. A GUIDE TO CONSTRUCTION ON OR WITH MATERIALS EXHIBITING ADDITIONAL

SETTLEMENT DUE TO "COLLAPSE" OF GRAIN STRUCTURE. PROCEEDINGS OF THE

SIXTH REGIONAL CONFERENCE FOR AFRICA ON

SOIL MECHANICS AND FOUNDATION ENGINEERING. pp. 99-105. Durban.

NHBRC. 1999. NATIONAL HOME BUILDERS REGISTRATION COUNCIL, HOME BUILDING

MANUAL PARTS 1 &2. REVISION NO.:1, 1999.

PECK R B et al. 1974. **FOUNDATION ENGINEERING.**

John Wiley & Sons: New York.

PRIKLONSKI V A, 1952 GRUNTOVEDENIE VITORAIC CHAST. GOSGEOLZDAT, MOSCOW, 1952. (ENGLISH:

BELL F G, CULSHAW M G & NORTHMORE K J., THE METASTABILITY OF SOME GULL-FILL MATERIALS FROM ALLINGTON, KENT, UK. QUARTERLY JOURNAL OF

ENGINEERING GEOLOGY AND HYDROGEOLOGY, 36; ISSUE 3, 217 -229).

SCHMERTMANN J H. 1955. THE UNDISTURBED CONSOLIDATION BEHAVIOUR OF CLAY.

ASCE, Transactions, Volume 120.

SCHWARTZ K. 1985. COLLAPSIBLE SOILS. THE CIVIL ENGINEERING IN SOUTH AFRICA, Volume 27, No.

7, pp. 379 - 393. SAICE: Johannesburg.

VAN DER MERWE D H. 1964. THE PREDICTION OF HEAVE FROM THE PLASTICITY INDEX AND PERCENTAGE

CLAY FRACTION OF CLAYS. CIVIL ENGINEER IN SOUTH AFRICA, 6, JUNE 1964.

SAVAGE P F. 2007. **EVALUATION OF POSSIBLE SWELLING POTENTIAL OF SOIL.** Proceedings of the

26th South African Transport Conference (SATC 2007), 9 – 12 July 2007.

LIST OF APPENDICES

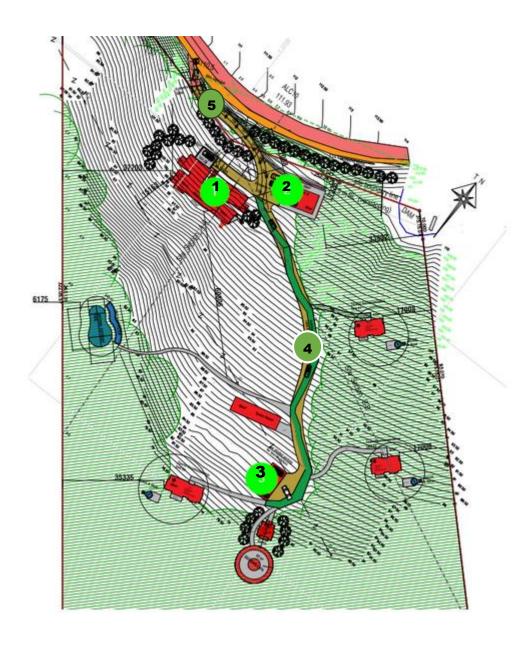
APPENDIX A: Soil Profile Sheets

APPENDIX B: Laboratory Test Results

APPENDIX A:

Soil Profile Sheets

APPENDIX B:


Laboratory Test Results

Project: Geotechnical Investigation, Erf 1058 Whites Avenue, Hoekwil, Wilderness

Date: 04/07/2023

Our job nr: TP19163

P.O. Box 35, Hartenbos, 6520 e-mail: jaco@testpro.co.za

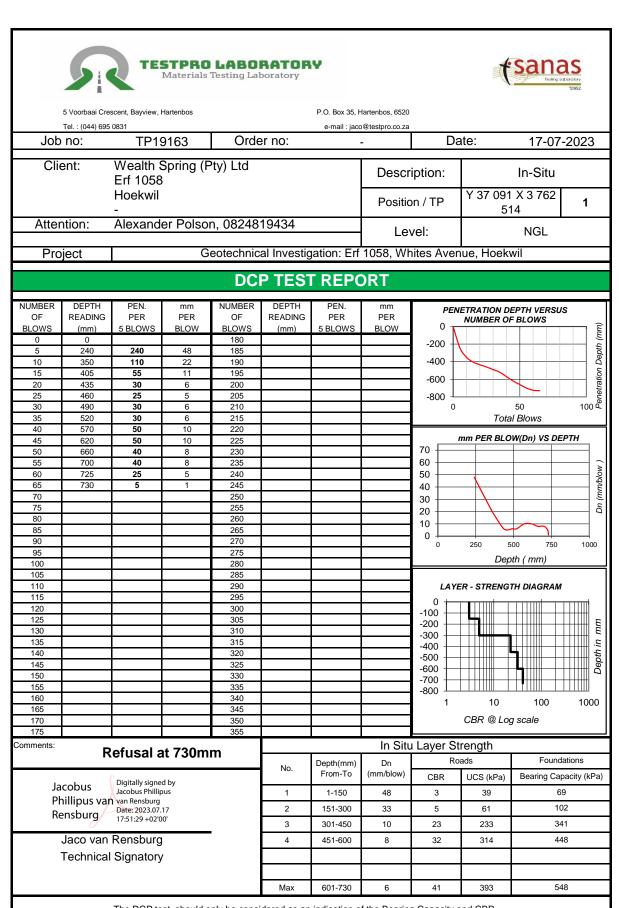
Client:	Wealth Spring (Pty) Ltd				
	Erf 1058				
	Hoekwil				
	-				
Attention:	Alexander Polson, 0824819434				

DYNAMIC CONE PENETROMETER(S) TEST REPORT (TMH6: ST6)

Job No:	TP1	9163				
Order No:		-				
Total number DCP tests:		5				
Project Information:	Geotechnical Investigation: Erf	f 1058, Whites Avenue, Hoekwil				
Number of pages:	6					
Date Tested:	04/07/2023					
Tested by:	Jaco v F	Jaco v Rensburg				
DCP no:	DC	CP 1				
Sampling Plan:	As per cli	ent request				
Soil Type:	Top Soil & We	eathered Granite				
Soil Conditions:	Optimum					
Tests Requested/Method:	DCP TMH6: Method S					

Summary of Positions	DCP test	Position
	TP1	Y 37 091 X 3 762 514
	TP2	Y 37 062 X 3 762 496
	TP3	Y 37 024 X 3 762 573
	TP4	Y 37 029 X 3 762 528
	TP5	Y 37 094 X 3 762 488
		-
		-
		-
		-
		-
Date Reported:	17/07	7/2023

		Deviations/Notes	:	
-				


Remarks:

- 1. The results reported relate only to the positions tested. Further use of the above information is not the responsibility or liability of TESTPRO Laboratory.
- This document is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Manager of TESTPRO Laboratory.
- 3. Measuring equipment is traceable to national standards (Where applicable).
- CBR analysis done according to: The use and interpretation of the dynamic cone penetrometer (dcp) test by Paige-Green and L Du Plessis of CSIR Built Environment 2009

Jacobus Phillipus van Rensburg

Digitally signed by Jacobus Phillipus van Rensburg Date: 2023.07.17 17:51:15 +02'00'

Jaco van Rensburg
Technical Signatory

The DCP test should only be considered as an indication of the Bearing Capacity and CBR.

5 Voorbaai Crescent, Bayview, Hartenbos

P.O. Box 35, Hartenbos, 6520

Tel.: (044) 695 0831			e-mail: jaco@testpro.co.za
b no:	TP19163	Order no:	-

Job no:	TP19163	Order no:	-	Da	ate: 17-07	7-2023
Client:	Wealth Spring (P Erf 1058	Descr	ription:	In-Situ		
	Hoekwil		Positio	on / TP	Y 37 062 X 3 762	2

Alexander Polson, 0824819434 Attention: Level: NGL

Geotechnical Investigation: Erf 1058, Whites Avenue, Hoekwil Project

DCP TEST REPORT

NUMBER	DEPTH	PEN.	mm	NUMBER	DEPTH	PEN.	mm	PENETRATION DEPTH VERSUS
OF	READING	PER	PER	OF	READING	PER	PER	NUMBER OF BLOWS
BLOWS	(mm)	5 BLOWS	BLOW	BLOWS	(mm)	5 BLOWS	BLOW	-200 -400 -600 -800 0 20 40 de
0	0			180				-200
5	320	320	64	185				
10	420	100	20	190				-400 <u> </u>
15	540	120	24	195				-600 <u>Ş</u>
20	645	105	21	200				Lat tat
25	690	45	9	205				-800
30	705	15	3	210				
35				215				Total Blows
40				220				
45				225				90 mm PER BLOW(Dn) VS DEPTH
50				230				80
55				235				
60				240				60
65				245				70 60 50 40 30
70				250				1 40
75				255				30
80				260				20
85				265				10
90				270				0 250 500 750
95				275				
100				280				Depth (mm)
105				285				
110				290				LAYER - STRENGTH DIAGRAM
115				295				0 +
120				300				-100
125				305				
130				310				-200 -300
135				315				
140				320				-400
145				325				-600
150				330				-700
155				335				-800
160				340				1 10 100 1000
165				345				1 10 100 1000
170				350				CBR @ Log scale
175				355		T	T	

Comments: Refusal at 705mm

Jacobus Phillipus van van Rensburg

Date: 2023.07.17
17:51:40 +02'00'

Digitally signed by Jacobus Phillipus

Jaco van Rensburg **Technical Signatory**

		In Situ	ı Layer St	rength		
No.	Depth(mm) Dn		Ros	ads	Foundations	
NO.	From-To	(mm/blow)	CBR UCS (kPa)		Bearing Capacity (kPa)	
1	1-150	64	2	29	51	
2	151-300 64		2	29	51	
3	301-450	23	8	90	145	
4	451-600	23	8	91	146	
Max	601-705	9	26	263	381	

The DCP test should only be considered as an indication of the Bearing Capacity and CBR.

Page 3 of 6

NGL

17-07-2023

5 Voorbaai Crescent, Bayview, Hartenbos

Client:

Attention:

Project

P.O. Box 35, Hartenbos, 6520

Tel.: (044) 695 0831 e-mail: jaco@testpro.co.za Job no: TP19163 Order no:

Wealth Spring (Pty) Ltd

Alexander Polson, 0824819434

Erf 1058

Hoekwil

Description: In-Situ

Date:

Level:

Y 37 024 X 3 762 Position / TP 3 573

Geotechnical Investigation: Erf 1058, Whites Avenue, Hoekwil

DCP TEST REPORT

NUMBER	DEPTH	PEN.	mm	NUMBER	DEPTH	PEN.	mm	PENETRATION DEPTH VERSUS
OF	READING	PER	PER	OF	READING	PER	PER	
BLOWS	(mm)	5 BLOWS	BLOW	BLOWS	(mm)	5 BLOWS	BLOW	0
0	0			180				-500 -1500 0 50 100d
5	310	310	62	185				-500
10	370	60	12	190				
15	530	160	32	195				-1000 <u>.</u> §
20	645	115	23	200				trat
25	710	65	13	205				-1500
30	875	165	33	210				0 50 1004
35	930	55	11	215				Total Blows
40	985	55	11	220				
45	1005	20	4	225				mm PER BLOW(Dn) VS DEPTH
50	1110	105	21	230				70
55	1120	10	2	235				60
60	1130	10	2	240				50 စို
65	1140	10	2	245				40
70	1145	5	1	250				60 50 40 30 30
75				255				20 5
80				260				10
85				265				
90				270				0 250 500 750 1000 1250
95				275				Donth (mm)
100				280				Depth (mm)
105				285				
110				290				LAYER - STRENGTH DIAGRAM
115				295				0 +
120				300				200
125				305				-200 E
130				310				-400 1 1 1 1 K
135				315				-600
140				320				-800 -1000 -
145				325				-1000
150				330				-1200
155				335				-1400
160				340				1 10 100 1000
165				345				
170				350				CBR @ Log scale
175				355				

Comments: Refusal at 1145mm

> Digitally signed by Jacobus Phillipus Jacobus Phillipus van van Rensburg
> Rensburg
> Date: 2023.07.17
> 17:51:52 +02'00'

Jaco van Rensburg **Technical Signatory**

	In Situ Layer Strength					
No.	Depth(mm)	Dn (mm/blow)	Ros	ads	Foundations	
NO.	From-To		CBR	UCS (kPa)	Bearing Capacity (kPa)	
1	1-150	62	2	30	53	
2	151-300	62	2	30	53	
3	301-450	20	9	108	170	
4	451-600	27	6	75	122	
5	601-750	18	10	116	181	
6	751-900	25	7	83	134	
Max	1051-1145	4	64	585	785	

The DCP test should only be considered as an indication of the Bearing Capacity and CBR.

Page 4 of 6

4

5 Voorbaai Crescent, Bayview, Hartenbos

P.O. Box 35, Hartenbos, 6520

Tel.: (044) 695 0831 e-mail: jaco@testpro.co.za Job no:

TP19163 Order no: Date: 17-07-2023

Client: Wealth Spring (Pty) Ltd

Erf 1058 Hoekwil

Description: In-Situ

Y 37 029 X 3 762 Position / TP 528

Alexander Polson, 0824819434 Attention: Level: NGL

Geotechnical Investigation: Erf 1058, Whites Avenue, Hoekwil Project

DCP TEST REPORT

NUMBER	DEPTH	PEN.	mm	NUMBER	DEPTH	PEN.	mm	PENETRATION DEPTH VERSUS
OF	READING	PER	PER	OF	READING	PER	PER	
BLOWS	(mm)	5 BLOWS	BLOW	BLOWS	(mm)	5 BLOWS	BLOW	500
0	0			180				0
5	5	5	1	185				tttd
10	315	310	62	190				-500
15	410	95	19	195				-1000 Sg
20	470	60	12	200				trat trat
25	515	45	9	205				500 NUMBER OF BLOWS 0 -500 -1000 -1500 0 50 100 1500
30	555	40	8	210				0 50 100 150 %
35	590	35	7	215				Total Blows
40	630	40	8	220				
45	685	55	11	225				mm PER BLOW(Dn) VS DEPTH
50	750	65	13	230				120
55	810	60	12	235				100
60	850	40	8	240				80
65	870	20	4	245				
70	890	20	4	250				60
75	910	20	4	255				40
80	940	30	6	260				20
85	970	30	6	265				
90	990	20	4	270				0 250 500 750 1000 1250
95	1010	20	4	275				
100	1035	25	5	280				Depth (mm)
105	1065	30	6	285				
110				290				LAYER - STRENGTH DIAGRAM
115				295				0 +
120				300				
125				305				-200
130				310				-400
135				315				
140				320				L
145				325				-800
150				330				-1000
155				335				-1200
160				340				1 10 100 1000
165				345				1 10 100 1000
170				350				CBR @ Log scale
175				355				

Comments: Refusal at 1065mm

> Jacobus Phillipus van van Rensburg
> Rensburg
> Date: 2023.07.17
> 17:52:03 +02'00'

Digitally signed by Jacobus Phillipus

Jaco van Rensburg **Technical Signatory**

In Situ Layer Strength					
No.	Depth(mm)	Dn	Ro	ads	Foundations
NO.	From-To	(mm/blow)	CBR	UCS (kPa)	Bearing Capacity (kPa)
1	1-150	20	9	103	163
2	151-300	62	2	30	53
3	301-450	17	11	122	190
4	451-600	8	28	278	401
5	601-750	11	20	207	307
6	751-900	7	37	359	504
Max	1051-1065	6	42	403	561

The DCP test should only be considered as an indication of the Bearing Capacity and CBR.

Page 5 of 6

5 Voorbaai Crescent, Bayview, Hartenbos

Attention:

P.O. Box 35, Hartenbos, 6520

Tel. : (044) 695 0831 e-mail : jaco@testpro.co.za

Job no: TP19163 Order no: -

 Job no:
 TP19163
 Order no:
 Date:
 17-07-2023

 Client:
 Wealth Spring (Pty) Ltd Erf 1058
 Description:
 In-Situ

Hoekwil Position / TP Y 37 094 X 3 762 488 5

Alexander Polson, 0824819434 Level: NGL

Project Geotechnical Investigation: Erf 1058, Whites Avenue, Hoekwil

DCP TEST REPORT

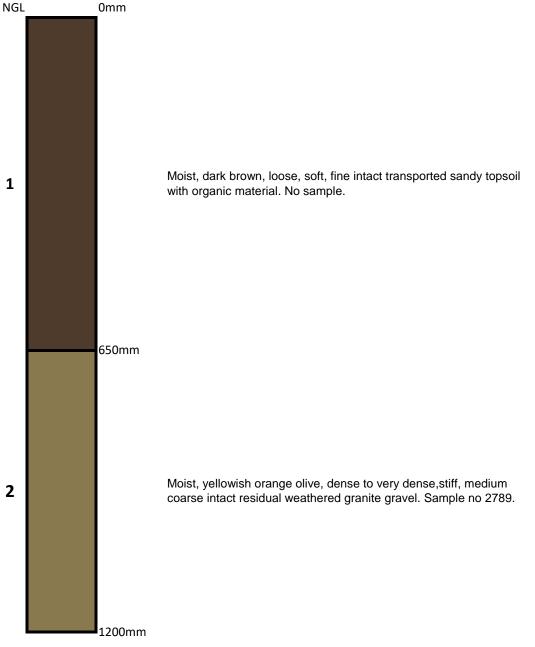
NUMBER	DEPTH	PEN.	mm	NUMBER	DEPTH	PEN.	mm	PENETRATION DEPTH VERSUS
OF	READING	PER	PER	OF	READING	PER	PER	
BLOWS	(mm)	5 BLOWS	BLOW	BLOWS	(mm)	5 BLOWS	BLOW	-500 NUMBER OF BLOWS (im.) 1500d
0	0			180				\
5	220	220	44	185				
10	353	133	26.6	190				-500
15	430	77	15.4	195				9
20	485	55	11	200				ta t
25	520	35	7	205				-1000
30	550	30	6	210				0 50 100 150ლ
35	575	25	5	215				Total Blows
40	595	20	4	220				
45	610	15	3	225				mm PER BLOW(Dn) VS DEPTH
50	630	20	4	230				70
55	653	23	4.6	235				60
60	680	27	5.4	240				50
65	715	35	7	245				60 50 40 30 30
70	750	35	7	250				30
75	775	25	5	255				20 5
80	800	25	5	260				10
85	810	10	2	265				0
90	820	10	2	270				0 250 500 750 1000
95	835	15	3	275				
100	845	10	2	280				Depth (mm)
105	860	15	3	285				
110	870	10	2	290				LAYER - STRENGTH DIAGRAM
115	875	5	1	295				0 +
120	890	15	3	300				
125	900	10	2	305				-200
130	920	20	4	310				-400
135				315				-400 <u> </u>
140				320				-400 000-
145				325				I
150				330				-000
155				335				-1000
160				340				1 10 100 1000
165				345				
170				350				CBR @ Log scale
175				355				

Comments: Refusal at 920mm

Jacobus Digitally signed by Jacobus Phillipus Phillipus van van Rensburg Date: 2023.07.17 17:52:14 +02'00'

Jaco van Rensburg Technical Signatory

L	In Situ Layer Strength					
I	No.	Depth(mm)	Dn	Ro	ads	Foundations
1	INO.	From-To	(mm/blow)	CBR	UCS (kPa)	Bearing Capacity (kPa)
I	1	1-150	44	3	44	75
ĺ	2	151-300	33	5	61	101
I	3	301-450	17	11	126	196
I	4	451-600	6	42	401	557
ĺ	5	601-750	5	49	464	636
I	6	751-900	3	115	972	1244
I	Max	901-920	4	70	635	845

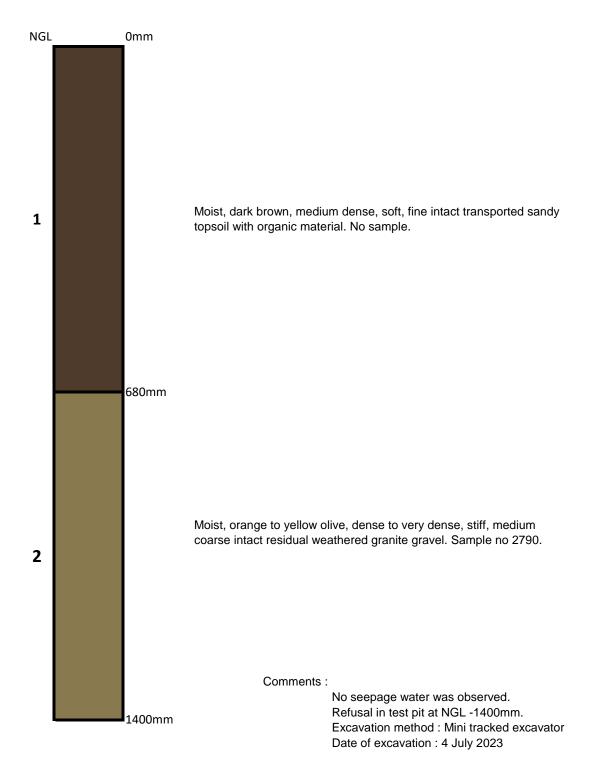

The DCP test should only be considered as an indication of the Bearing Capacity and CBR.

End of Report

Page 6 of 6

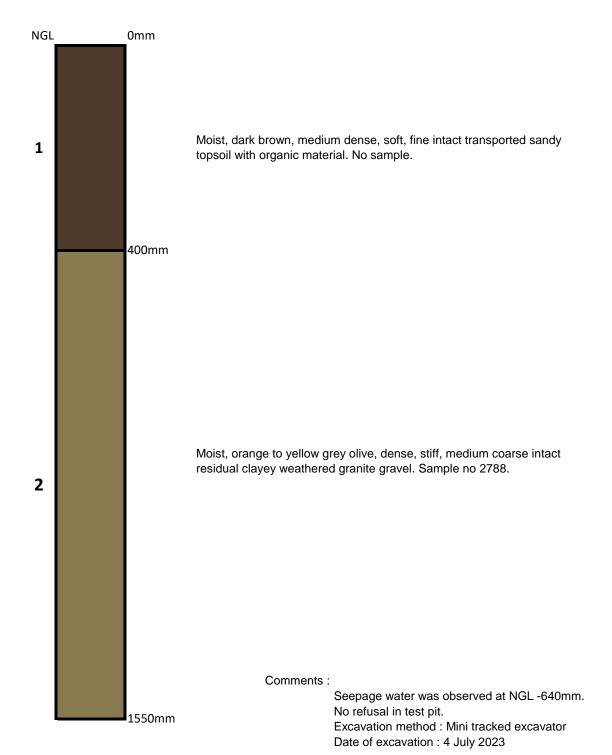
PROPOSED DEVELOPMENT ON ERF 1058, WHITES ROAD HEOKWIL, WILDERNESS

TEST PIT 1: PROFILE


Comments:

No seepage water was observed. Refusal in test pit at NGL -1200mm. Excavation method: Mini tracked excavator Date of excavation: 4 July 2023

PROPOSED DEVELOPMENT ON ERF 1058, WHITES ROAD HEOKWIL, WILDERNESS


TEST PIT 2: PROFILE

PROPOSED DEVELOPMENT ON ERF 1058, WHITES ROAD HEOKWIL, WILDERNESS

TEST PIT 3: PROFILE

P.O. Box 35, Hartenbos, 6520 e-mail : jaco@testpro.co.za

Client:	Wealth Spring (Pty) Ltd
	Erf 1058
	Hoekwil
	-
Attention:	Alexander Polson, 0824819434

SOIL ANALYSIS TEST REPORT

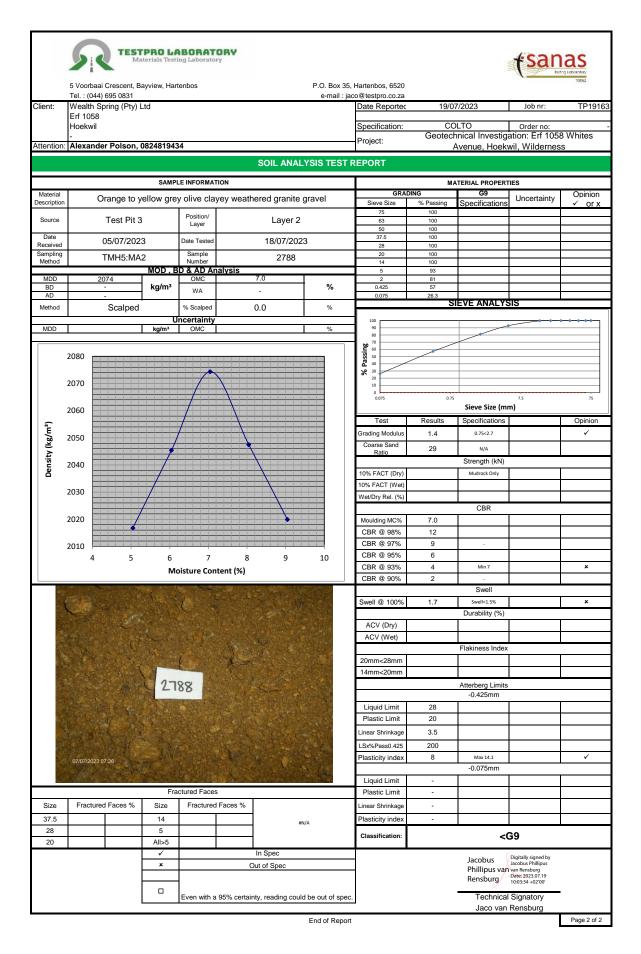
Job No:	TP1	9163		
Order No:		-		
Sample No:	27	788		
Project Information:		f 1058 Whites Avenue, Hoekwil, erness		
Number of pages:		2		
Date Received:	05/07	7/2023		
Date Sampled:	05/0	7/2023		
Sampled by:	TESTPRO	Laboratory		
Sample plan included:	1	No		
Environmental Conditions:				
Delivered by:	Cl	lient		
Sampling method:	TMH5:MA2			
Source of sample	Tes	Test Pit 3		
Condition of sample:	G	Good		
Conformity statement requested by client:	Yes			
Subcontractor (if any)	1	No		
Material description:	Orange to yellow grey olive c	layey weathered granite gravel		
Tests Requested/Method:		ANS		
	Grading	SANS 3001-GR1		
	Atterberg Limits	SANS 3001-GR10 & -GR20		
	M.D.D	SANS 3001-GR30 & -GR20		
	C.B.R.	SANS 3001-GR40 & -GR20		
Date Completed:	18/07	7/2023		

	Notes/Deviations
-	
-	
-	
-	

Remarks:

- 1. All tests marked (#) are not included in our schedule of Accreditation.
- 2. The results reported relate only to the sample tested. Statement of conformity are not made or implied in the report, unless required by the client. Review the results, expanded uncertainty, and specifications to ensure they meet your requirements.

The final decision rule will be the customers risk and not the Laboratory.


The Laboratory does not report a statement of conformity unless it is inherent in the requested specification or standard.

- This document is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Manager of TESTPRO Laboratory.
- 4. Measuring equipment is traceable to national standards (Where applicable).
- 5. Samples will be retained, for a one month period, before disposal.
- 6. Tests are reported with an approximate 95% level of confidence.
- 7. Uncertainty of measurement will only be reported if requested by the client.
- 8. Opinions & Interpretations are not included in our schedule of Accreditation.

Jacobus
Phillipus
Van
Pensburg
Phillipus
Van
Date: 2023.07.19
Date: 2023.07.19
Date: 2023.07.19

Technical Signatory
Jaco van Rensburg

Page 1 of 2

P.O. Box 35, Hartenbos, 6520 e-mail: jaco@testpro.co.za

Client:	Wealth Spring (Pty) Ltd
	Erf 1058
	Hoekwil
	-
Attention:	Alexander Polson, 0824819434

SOIL ANALYSIS TEST REPORT

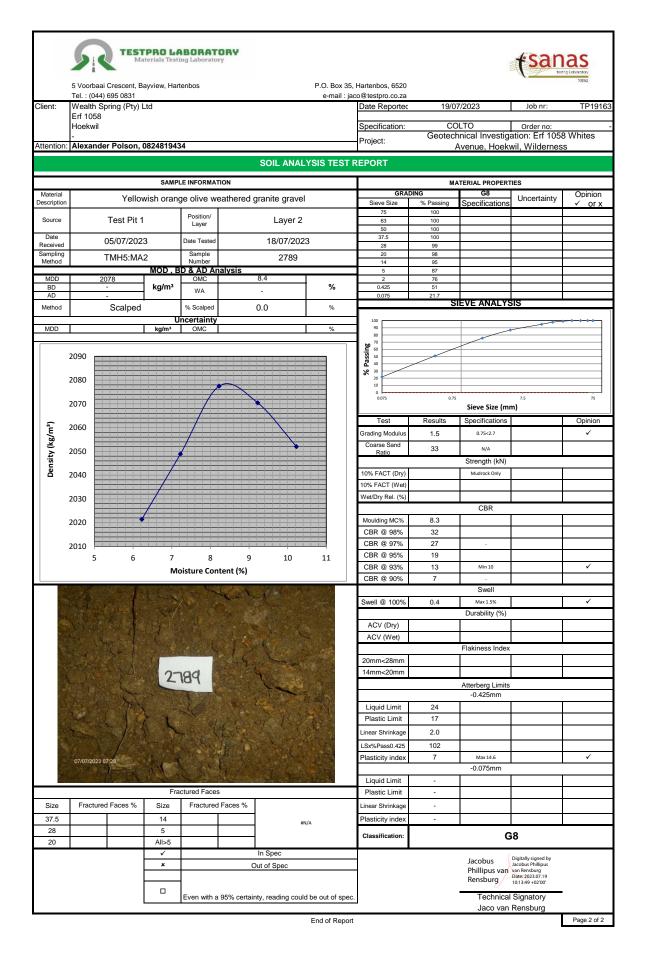
Job No:	TP	19163		
Order No:		-		
Sample No:	2789			
Project Information:		f 1058 Whites Avenue, Hoekwil, erness		
Number of pages:	1110	2		
Date Received:	05/0	7/2023		
Date Sampled:	05/0	7/2023		
Sampled by:	TESTPRO	O Laboratory		
Sample plan included:		No		
Environmental Conditions:	Rainy / Cold /			
Delivered by:	С	lient		
Sampling method:	TMH5:MA2			
Source of sample	Test Pit 1			
Condition of sample:	G	Good		
Conformity statement requested by client:	Yes			
Subcontractor (if any)		No		
Material description:	Yellowish orange olive	weathered granite gravel		
Tests Requested/Method:		ANS		
	Grading	SANS 3001-GR1		
	Atterberg Limits	SANS 3001-GR10 & -GR20		
	M.D.D	SANS 3001-GR30 & -GR20		
	C.B.R.	SANS 3001-GR40 & -GR20		
Date Completed:	18/0	7/2023		

	Notes/Deviations
-	
-	
-	
-	

Remarks:

- 1. All tests marked (#) are not included in our schedule of Accreditation.
- The results reported relate only to the sample tested. Statement of conformity are not made or implied in the report, unless required by the client. Review the results, expanded uncertainty, and specifications to ensure they meet your requirements.

The final decision rule will be the customers risk and not the Laboratory.


The Laboratory does not report a statement of conformity unless it is inherent in the requested specification or standard.

- This document is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Manager of TESTPRO Laboratory.
- 4. Measuring equipment is traceable to national standards (Where applicable).
- 5. Samples will be retained, for a one month period, before disposal.
- 6. Tests are reported with an approximate 95% level of confidence.
- 7. Uncertainty of measurement will only be reported if requested by the client.
- 8. Opinions & Interpretations are not included in our schedule of Accreditation.

Jacobus Phillipus van Rensburg Rensburg
Digitally signed by Jacobus Phillipus van Rensburg Date: 2023.07.19 10:13:34 +02'00'

> Technical Signatory Jaco van Rensburg

> > Page 1 of 2

P.O. Box 35, Hartenbos, 6520 e-mail: jaco@testpro.co.za

Client:	Wealth Spring (Pty) Ltd
	Erf 1058
	Hoekwil
	•
Attention:	Alexander Polson, 0824819434

SOIL ANALYSIS TEST REPORT

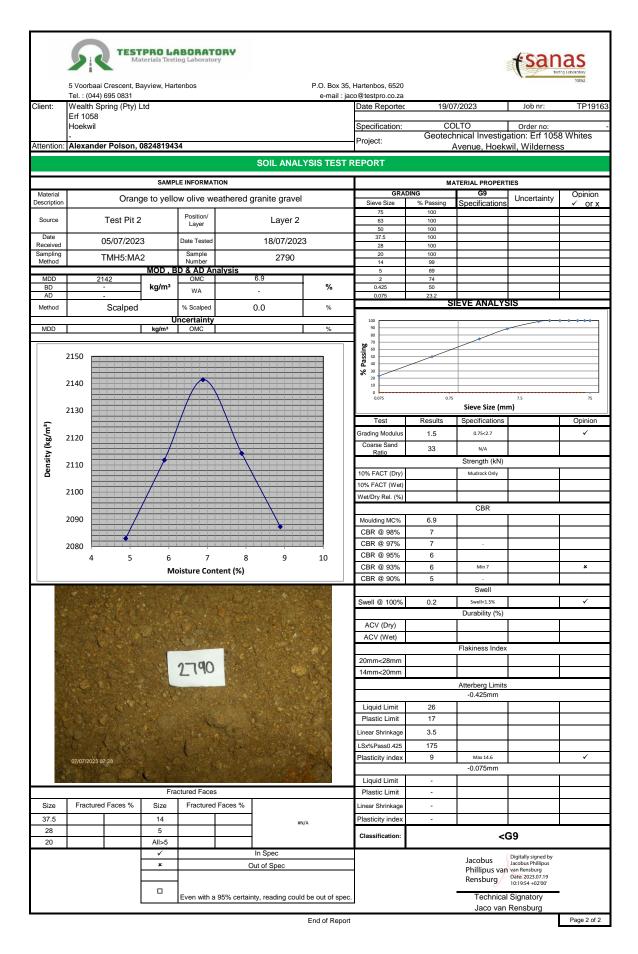
Job No:	TP	19163
Order No:	•	
Sample No:	2	790
Project Information:		f 1058 Whites Avenue, Hoekwil, erness
Number of pages:		2
Date Received:	05/0	7/2023
Date Sampled:	05/0	7/2023
Sampled by:	TESTPRO) Laboratory
Sample plan included:		No
Environmental Conditions:		
Delivered by:	С	lient
Sampling method:	TMH	15:MA2
Source of sample	Test Pit 2	
Condition of sample:	G	lood
Conformity statement requested by client:	Yes	
Subcontractor (if any)		No
Material description:	Orange to yellow olive	weathered granite gravel
Tests Requested/Method:	SANS	
·	Grading	SANS 3001-GR1
	Atterberg Limits	SANS 3001-GR10 & -GR20
	M.D.D	SANS 3001-GR30 & -GR20
	C.B.R.	SANS 3001-GR40 & -GR20
Date Completed:	18/0	7/2023

	Notes/Dev	riations	

Remarks:

- 1. All tests marked (#) are not included in our schedule of Accreditation.
- 2. The results reported relate only to the sample tested. Statement of conformity are not made or implied in the report, unless required by the client. Review the results, expanded uncertainty, and specifications to ensure they meet your requirements.

The final decision rule will be the customers risk and not the Laboratory.


The Laboratory does not report a statement of conformity unless it is inherent in the requested specification or standard.

- This document is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Manager of TESTPRO Laboratory.
- 4. Measuring equipment is traceable to national standards (Where applicable).
- 5. Samples will be retained, for a one month period, before disposal.
- 6. Tests are reported with an approximate 95% level of confidence.
- 7. Uncertainty of measurement will only be reported if requested by the client.
- 8. Opinions & Interpretations are not included in our schedule of Accreditation.

Jacobus Digitally signed by Jacobus Phillipus van Van Rensburg Date: 2023.07.19 10:19:38 +02'00'

Technical Signatory
Jaco van Rensburg

Page 1 of 2

P.O. Box 35, Hartenbos, 6520 e-mail: jaco@testpro.co.za

Client:	Wealth Spring (Pty) Ltd		
	Erf 1058		
	Hoekwil		
	-		
Attention:	Alexander Polson, 0824819434		

FOUNDATION INDICATOR TEST REPORT

Job No:	TP19163		
Sample No:	2788		
Project Information:	Geotechnical Investigation:	Erf 1058 Whites Avenue	
	Hoekwil, W	ilderness	
Number of pages:	2		
Date Received:	05/07/2	2023	
Sampled by:	TESTPRO L	aboratory	
Delivered by:	Testpro La	boratory	
Sampling plan:	-		
Source of sample	Test F	Pit 3	
Condition of sample:	Good		
Material description:	Weathered Granite Gravel		
Tests Requested/Method:	Foundation	Indicator	
	Grading	SANS 3001-GR1	
	Atterberg Limits	SANS 3001-GR10	
	Hydrometer	SANS 3001-GR3#	
Sampling Method:	A natural gravel, soil or sand	TMH5:MA2	
Date Completed:	19/07/2023		

Deviations/Note

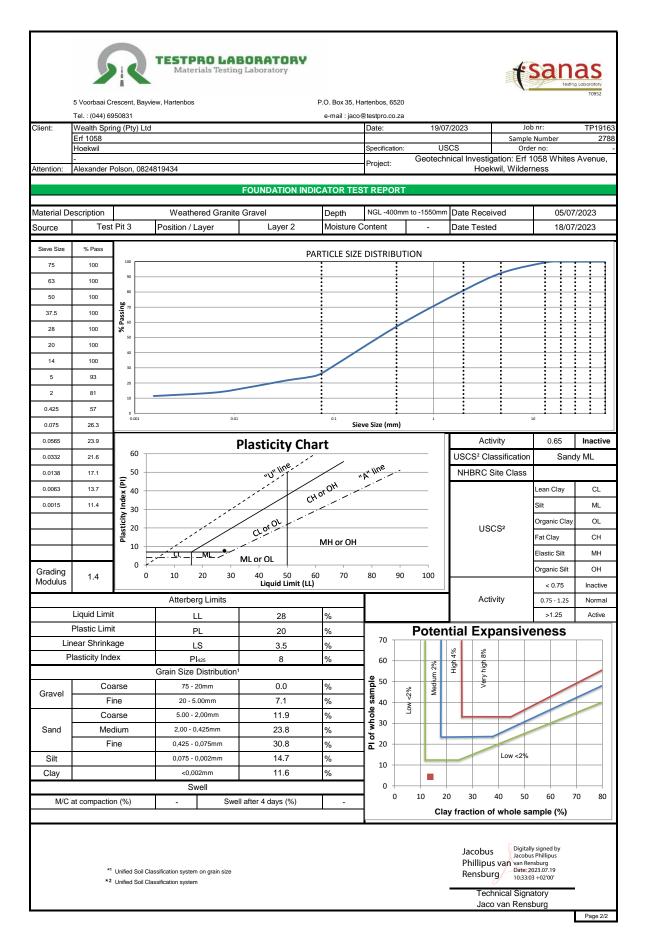
Table 2: ARD taken as 2.65

Hydrometer analysis done on -0.425mm fraction

_

Atterberg Limits analysis done on -0.425mm fraction.

Remarks:


- 1. Opinions & Interpretations are not included in our schedule of Accreditation.
- 2. The samples where subjected and analyzed according to SANS.
- The results reported relate only to the sample tested, Further use of the above information is not the responsibility or liability of TESTPRO Laboratory.
- 4. This document is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Manager of TESTPRO Laboratory.
- 5. Measuring equipment is traceable to national standards (Where applicable).
- 6. All tests marked (#) are not included in our schedule of Accreditation.
- 7. Samples will be retained, for a one month period, before disposal.

Jacobus Phillipus van Rensburg

Digitally signed by Jacobus Phillipus van Rensburg Date: 2023.07.19 10:32:48 +02'00'

Technical Signatory
Jaco van Rensburg

Page 1/2

P.O. Box 35, Hartenbos, 6520 e-mail: jaco@testpro.co.za

Client:	Wealth Spring (Pty) Ltd
	Erf 1058
	Hoekwil
	•
Attention:	Alexander Polson, 0824819434

FOUNDATION INDICATOR TEST REPORT

Job No:	TP19163			
Sample No:		2789		
Project Information:	Geotechnical Investigation:	Erf 1058 Whites Avenue,		
1 Tojout illioimation.	Hoekwil, W	Hoekwil, Wilderness		
Number of pages:	2			
Date Received:	05/07/2	2023		
Sampled by:	TESTPRO L	aboratory		
Delivered by:	Testpro La	boratory		
Sampling plan:	-			
Source of sample	Test F	Pit 1		
Condition of sample:	God	od		
Material description:	Weathered Gr	Weathered Granite Gravel		
Tests Requested/Method:	Foundation Indicator			
	Grading	SANS 3001-GR1		
	Atterberg Limits	SANS 3001-GR10		
	Hydrometer	SANS 3001-GR3#		
Sampling Method:	A natural gravel, soil or sand	TMH5:MA2		
Date Completed:	19/07/2023			

Deviations/Notes			
Table 2: ARD taken as 2.65			
Hydrometer analysis done on -0.425mm fraction			
-			
Atterberg Limits analysis done on -0.425mm fraction.			

Remarks:


- 1. Opinions & Interpretations are not included in our schedule of Accreditation.
- 2. The samples where subjected and analyzed according to SANS.
- The results reported relate only to the sample tested, Further use of the above information is not the responsibility or liability of TESTPRO Laboratory.
- 4. This document is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Manager of TESTPRO Laboratory.
- 5. Measuring equipment is traceable to national standards (Where applicable).
- 6. All tests marked (#) are not included in our schedule of Accreditation.
- 7. Samples will be retained, for a one month period, before disposal.

Jacobus Phillipus van Rensburg

Digitally signed by Jacobus Phillipus van Rensburg Date: 2023.07.19 10:37:56 +02'00'

Technical Signatory
Jaco van Rensburg

Page 1/2

P.O. Box 35, Hartenbos, 6520 e-mail: jaco@testpro.co.za

Client:	Wealth Spring (Pty) Ltd		
	Erf 1058		
	Hoekwil		
	-		
Attention:	Alexander Polson, 0824819434		

FOUNDATION INDICATOR TEST REPORT

Job No:	TP19163		
Sample No:	2790		
Project Information:	Geotechnical Investigation:	*	
,	Hoekwil, W	/ilderness	
Number of pages:	2		
Date Received:	05/07/	/2023	
Sampled by:	TESTPRO	Laboratory	
Delivered by:	Testpro L	aboratory	
Sampling plan:	-		
Source of sample	Test Pit 2		
Condition of sample:	Go	od	
Material description:	Weathered Granite Gravel		
Tests Requested/Method:	Foundation Indicator		
	Grading	SANS 3001-GR1	
	Atterberg Limits SANS 3001-GR		
	Hydrometer	SANS 3001-GR3#	
Sampling Method:	A natural gravel, soil or sand	TMH5:MA2	
Date Completed:	19/07/2023		

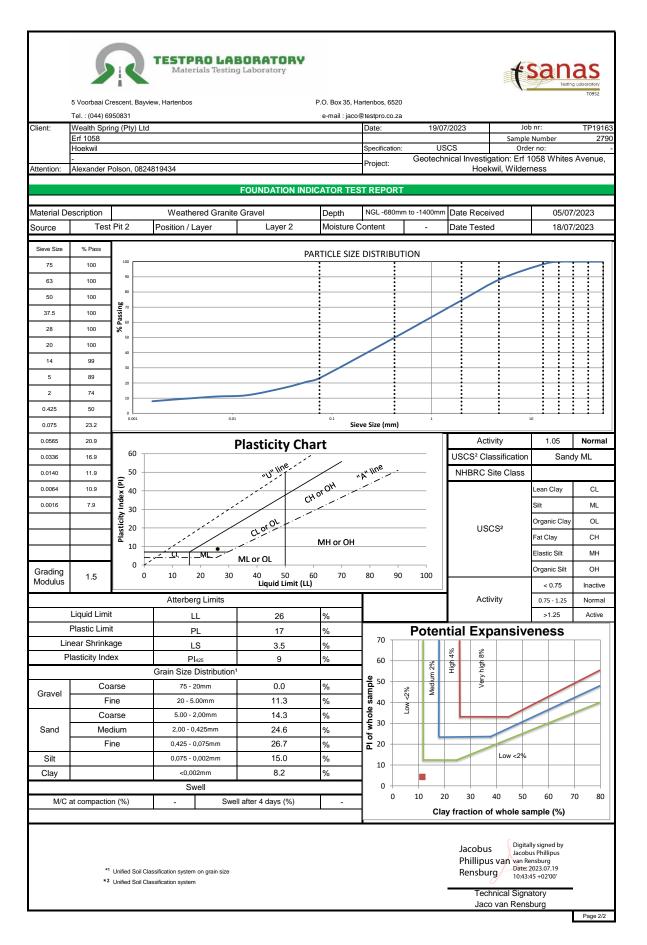
_			/=	
110	/121	hon	C/N	lotes
ישט	viai	uou	13/ I N	いにてる

Table 2: ARD taken as 2.65

Hydrometer analysis done on -0.425mm fraction

_

Atterberg Limits analysis done on -0.425mm fraction.


Remarks:

- 1. Opinions & Interpretations are not included in our schedule of Accreditation.
- 2. The samples where subjected and analyzed according to SANS.
- The results reported relate only to the sample tested, Further use of the above information is not the responsibility or liability of TESTPRO Laboratory.
- 4. This document is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Technical Manager of TESTPRO Laboratory.
- 5. Measuring equipment is traceable to national standards (Where applicable).
- 6. All tests marked (#) are not included in our schedule of Accreditation.
- 7. Samples will be retained, for a one month period, before disposal.

Jacobus Phillipus van van Rensburg Digitally signed by Jacobus Phillipus van van Rensburg Date: 2023.07.19 10:43:28 +02'00'

Technical Signatory
Jaco van Rensburg

Page 1/2

